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Abstract—In this work we present a CGAL (Computational
Geometry Algorithm Library) implementation of the line segment
Voronoi diagram under the L∞ metric, building on top of
the existing line segment Voronoi diagram under the Euclidean
(L2) metric. CGAL is an open-source collection of geometric
algorithms implemented in C++, used in both academia and
industry. We also discuss a possible application of the L∞
segment Voronoi diagram in the area of VLSI pattern analysis.
In particular, we identify potentially critical locations in VLSI
design patterns, where the pattern, when printed with the
photolithography process and depending on its context and
various process conditions, may differ substantially from the
original intended VLSI design, improving on existing methods.

Index Terms—Voronoi diagram; Delaunay graph; line seg-
ment; CGAL; VLSI pattern analysis.

I. INTRODUCTION

Let S be a set of n sites in the plane (simple geometric
shapes, such as points, line segments, or circular arcs). The
(nearest-neighbor) Voronoi diagram [3], [4] of S is a subdi-
vision of the plane into regions such that the region of a site
s ∈ S is the locus of points closer to s than to any other site
in S. The distance of a site s from a point q in the plane is
defined as d(s, q) = minp∈s d(p, q), where the the interpoint
distance d(p, q) can be the Euclidean (L2) distance or any
other metric.

In this paper, we focus on the Voronoi diagram of line
segments in the plane, under the L∞ metric (or maximum
norm): d(p, q) = d∞(p, q) = max(|px − qx|, |py − qy|). Let’s
assume that the segments are not crossing in their interiors
(if they are, we can break each crossing segment into smaller
segments until there is no crossing). In Figure 1, we show with
red the Voronoi diagram of the same set of segments under
the L2 and the L∞ metric.

The Voronoi diagram is a plane graph. Each face corre-
sponds to the Voronoi region of a site s ∈ S:

reg(s) = {q ∈ R2 | d(s, q) < d(s′, q),∀s′ ∈ S \ {s}}.

Each region contains its defining segment (see Figure 1). The
boundary between two neighboring faces is an edge of the
diagram. Edges meet at vertices of the diagram.

The Voronoi diagram of segments under the L∞ metric
has some nice properties, compared to the corresponding L2

diagram.
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Fig. 1. Segment Voronoi diagram under L2 and L∞ metric.

1) The L∞ diagram consists solely of straight line seg-
ments [17], whereas the L2 diagram can also have
parabolic arcs (see Figure 1).

2) If the coordinates of the endpoints of the input segments
(sites) are rational, then the coordinates of vertices of
the L∞ diagram are also rational. In contrast, in the L2

diagram, the coordinates of vertices can be algebraic
numbers of higher degree and square roots could be
required to denote exactly the coordinates of vertices
in the L2 diagram, even with rational input.

3) The degree of an algorithm [15] is a complexity measure
capturing its potential for robust implementation. An
algorithm has degree d if its test computations involve
the evaluation of multivariate polynomials of arithmetic
degree at most d. The degree captures the precision
to which arithmetic calculations need to be executed,
for a robust implementation of the algorithm. There-
fore algorithms of low degree are desirable. A crucial
predicate for a Voronoi algorithm is the in-circle test,
which checks whether a new input segment is altering
or erasing an existing vertex of the diagram. The L2

in-circle test for arbitrary segments can be implemented
with degree 40 [6], [7], whereas the corresponding L∞
test only with degree 5 [17].

Segment Voronoi diagrams encode proximity information
between polygonal objects. In many applications proximity
is most naturally expressed with the L2 distance, but there
are applications, particularly in VLSI pattern analysis, for
which the L∞ distance is a good and simpler approximation
to the L2 distance [22], [17], [23], [16]. We remark that the
straight skeleton [2] captures the shape of polygonal objects



in a natural manner, avoiding parabolic arcs (even in the L2

metric), however, straight skeletons do not provide proximity
information and therefore cannot be used in place of Voronoi
diagrams. It is worth mentioning that the straight skeleton and
the Voronoi diagram under the L∞ coincide when the input
consists of axis-parallel segments, which is predominant in
VLSI designs.

Therefore, an implementation of the L∞ segment Voronoi
diagram is desirable, but, as far as we know, there is none
freely available (except the proprietary [22]). Instead of build-
ing such an algorithm from scratch, we decided to develop it
in the CGAL framework, on top of the existing L2 segment
Voronoi diagram of CGAL [10]. The Computational Geometry
Algorithm Library (CGAL) is an open-source collection of a
wide range of geometric algorithms implemented in C++. It
is used in both academia and industry in various application
domains, such as computer graphics, scientific visualization,
computer aided design and modeling, mesh generation, etc.
The geometric algorithms and data structures in CGAL are
implemented with the design goals of robustness, genericity,
flexibility, efficiency, and ease of use [9]. These design goals
are fulfilled in CGAL by employing C++ generic programming
[5], through template classes, and function templates [18].

CGAL is built in a modular way and there is provision for
code reuse. We can exploit this provision by using a significant
part of the L2 segment Voronoi diagram incremental construc-
tion code [10] which is already in CGAL. In particular, most
geometric predicates related to the L2 diagram (like the in-
circle test) are included in a traits class that is passed as
a template parameter to the generic L2 segment algorithm.
Ideally, we can substitute this traits class with an analogous
traits class for the L∞ diagram. Still, writing geometric traits
for the L∞ geometric predicates and constructions is far from
a trivial task, but the generic L2 algorithm can be mostly
reused. In practice, we also have to make some changes
to the generic L2 algorithm, but they are relatively few. In
section III, we explain some details of our implementation
that we consider the most interesting; a complete description
would be out of scope for this paper.

Finally, we use our code for the L∞ diagram for an
application in VLSI pattern analysis. With the increase in
miniaturization of current VLSI patterns, there is a significant
rise in printability problems of such patterns, during the
photolithography process. In order to address these printability
problems, VLSI designers have developed several models,
including model-based optical proximity correction (OPC).
Currently OPC models are mainly based on image parameters
of the test patterns [19], [1], [21]. We discuss the potential
of using the L∞ segment Voronoi diagram to identify critical
locations in a VLSI layout pattern. This is an important step in
selecting interesting test patterns from a large pool of patterns.
These selected patterns will be sufficient to assess a big layout.

The rest of this work is organized as follows. We review the
details of the L2 segment Voronoi diagram implementation
in CGAL, especially the ones that are relevant to our L∞
implementation in section II. We explain some details of our
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Fig. 2. Segment Voronoi diagram under L2 and L∞ metric, with distinct
sites for interiors of segments and their endpoints.

Voronoi diagram

Delaunay graph

s∞

Fig. 3. L∞ Voronoi diagram and Delaunay graph of five point sites (black),
together with an additional site s∞ at infinity. Infinite edges are shown dashed.
Voronoi vertices are shown with red (finite ones are filled and infinite ones
are unfilled).

L∞ segment Voronoi diagram implementation in section III.
We describe the application of the L∞ segment Voronoi
diagram in detecting potentially critical locations in VLSI
design patterns in section IV.

II. L2 SEGMENT VORONOI DIAGRAM IN CGAL

The 2D segment Delaunay graph package [11] of CGAL
provides a randomized incremental construction of the L2

segment Voronoi diagram [13], [10]. The input S is a set
of points and segments (possibly intersecting). The pack-
age supports intersections of segments by computing inter-
nally the arrangement A(S) of the input sites (segments
and points). Internally, each “closed” input segment AB
is converted to three sites, namely its two endpoints A, B
and the “open” part of the segment (AB) (see Figure 2
and compare with Figure 1). For example, for input S =
{AB,CD}, where the two segments cross at their interior
at point E, the diagram is computed for the arrangement
A(S) = {A,B,C,D,E, (AE), (EB), (CE), (ED)}. Com-
puting the Voronoi diagram over the arrangement guarantees
all bisectors in the Voronoi diagram to be one-dimensional
and all Voronoi cells to be simply connected. As a result, the
resulting diagram is an abstract Voronoi diagram [14], which
can be efficiently computed. The expected cost of inserting
n sites is O((n + m) log2 n), where m is the number of
intersections of the n input segments and points.



Triangulation 2< . . .>

Segment Delaunay graph 2<GT, . . . > SDGL2

Segment Delaunay graph hierarchy 2<GT, . . . > SDH

Fig. 4. Existing algorithm classes for the SDG L2 package.

The dual graph of the segment Voronoi diagram is also a
plane graph and is called the segment Delaunay graph. It is
typical to always include an additional site s∞ at infinity, as it
simplifies the construction algorithms [13]. See Figure 3. As
its name suggests, the Segment Delaunay graph package of
CGAL computes in fact the segment Delaunay graph (SDG)
under the L2 metric. The package also provides drawing
functions that can convert each edge of the Delaunay graph to
the corresponding dual edge of the Voronoi diagram and this
is how it is possible to draw the Voronoi diagram.

The SDG L2 package contains two algorithm template
classes (see Figure 4) to construct the SDG.

1) The segment Delaunay graph class Seg-
ment Delaunay graph 2 (abbreviation: SDGL2) is
derived from a triangulation class (from the 2D
Triangulation package of CGAL). Among other things,
it contains the functionality to maintain and update the
arrangement of the input sites. It also contains functions
to construct duals of edges of the SDG, i.e., edges of
the Voronoi diagram.

2) The segment Delaunay (graph) hierarchy class Seg-
ment Delaunay graph hierarchy 2 (abbreviation: SDH)
is derived from the SDG class. It builds a hierarchy
of SDGs and uses it to achieve faster insertion of a
new site in the segment Delaunay graph. This is an
implementation with better worst-case complexity than
the SDG class (for details, see [8], [10]).

Both template classes have a mandatory template argument
(denoted by GT in Figure 4), that must be instantiated with
a geometric traits class, which contains geometric predicates
related to the L2 diagram (like the in-circle test). The require-
ments of this traits class are elaborated in the CGAL Segment-
DelaunayGraphTraits 2 concept [11]. There are four different
geometric traits implementations, (a) supporting intersections
or not and (b) using a user-supplied filtering kernel or not:

Segment Delaunay graph traits 2,

Segment Delaunay graph traits without intersections 2,

Segment Delaunay graph filtered traits 2, and

Segment Delaunay graph filtered traits without intersections 2.

III. L∞ SEGMENT VORONOI DIAGRAM IN CGAL

A. Design and relation with SDG L2

In this section, we explain how we implement the segment
Delaunay graph under the L∞ metric (SDG L∞) in CGAL,
trying to reuse as much code as possible from the existing SDG

SDGL2<GT, . . . >

SDGLinf<GT, . . . > SDH<GT, . . . ,SDGLx=SDGL2>

SDGLx<GT, . . . >

SDHLinf<GT, . . . > = SDH<GT, . . . ,SDGLinf>

Fig. 5. New algorithm classes for SDG L2 and L∞ packages.

L2 package of CGAL. Ideally, we would like the situation to
be as follows: We only write a geometric traits class containing
the L∞-related predicates (and constructions) and supply it
as the GT template argument of the SDG algorithm template
classes of Figure 4. In any case, the most significant part
of the algorithm, like the maintenance of the arrangement of
input sites and the high-level incremental construction of the
Delaunay graph is the same under both the L2 and the L∞
metric. Unfortunately, since the SDG L2 algorithm classes
were not designed with provision for other metrics except L2,
there is some L2-specific code in them, the most significant
being the code for drawing dual edges for the Voronoi diagram.
Fortunately, these hard-coded L2-specific functions in the
algorithms are few; most of the functionality is indeed in the
L2 geometric traits class. To be more specific, the segment
Delaunay graph class (SDGL2) contains the L2-specific code,
whereas the segment Delaunay hierarchy class (SDH) does not
contain any L2-specific code, except the fact that it is derived
from SDGL2 (see Figure 4).

We make the following design decisions related to the
existing SDG L2 implementation.

• We keep the same interface for users of the SDG L2

package, so that existing user code does not have to be
changed.

• We change the existing SDG L2 code as little as possible.
• Our changes preserve the efficiency of the SDG L2

algorithms.

Therefore, we implement a few local changes in the
code of the SDG L2 CGAL package. These changes are
mostly in the SDGL2 class and are explained later in
this section. These changes allow us to implement Seg-
ment Delaunay graph Linf 2 (abbreviation: SDGLinf) as a
class derived from SDGL2 (see Figure 5).

Since the existing hierarchy class SDH is hard-coded to use
only instances of SDGL2 at its levels, we alter SDH so that
it has an additional optional template parameter SDGLx (with
default value SDGL2), which is the segment Delaunay graph
class that is used in every level of the hierarchy (and from
which SDH is derived).

In Figure 5, the altered classes SDGL2 and SDH are shown
with gray, together with the new class SDGLinf. Since SDGLx
is an optional parameter with default value SDGL2, there
is no change for old user code of the L2 segment Delau-
nay hierarchy. By setting SDGLx to SDGLinf in the SDH
template, we obtain the segment Delaunay hierarchy under
the L∞ metric, for which we also create an alias template



class Segment Delaunay graph hierarchy Linf 2 (abbrevia-
tion: SDHLinf) (see Figure 5), for easy access to the user.

A user of the SDG L∞ package has access to two template
algorithm classes

Segment Delaunay graph Linf 2<GT, . . . > and

Segment Delaunay graph hierarchy Linf 2<GT, . . . >,

where the GT template argument should be instantiated with
one of the following L∞ geometric traits classes:

Segment Delaunay graph Linf traits 2,

Segment Delaunay graph Linf traits without intersections 2,

Segment Delaunay graph Linf filtered traits 2, and

Segment Delaunay graph Linf filtered traits without intersections 2,

which are analogous to the corresponding L2 geometric traits
classes.

Apart from the library classes, we also provide a GUI demo,
examples, and an ipelet for the L∞ segment Voronoi diagram.
Our package is currently under review for inclusion in the
CGAL library.

B. 1-Dimensionalization of L∞ bisectors

One important difference in the L∞ setting (in compar-
ison to the L2 setting) is that in some special non-general
position cases the L∞ bisector between two sites can be bi-
dimensional. The choice of considering an input segment as
three objects (two end points and an open segment) excludes
bi-dimensional bisectors in the L2 setting, but not in the
L∞ setting. Since the incremental construction algorithm
[13] expects uni-dimensional bisectors, we resort to a 1-
dimensionalization of these bisectors, by assigning portions
of bi-dimensional regions of a bisector to the two sites of
the bisector. This way it is also easier to draw the Voronoi
diagram. We remark that this simplification of the diagram is
acceptable in the VLSI applications, where the L∞ diagram
is employed [17].

If two different points p, q share one coordinate, then
their L∞ bisector is bi-dimensional, as shown in Figure 6. In
this special case, we 1-dimensionalize the bisector, by taking
instead the Euclidean bisector of the two points.

Similarly, the L∞ bisector between the interior of an
axis-parallel segment and one of its endpoints is also bi-
dimensional, as shown in Figure 7. We 1-dimensionalize this
bisector by taking instead the line passing through the endpoint
that is perpendicular to the segment.

C. The L∞ parabola and SDGLinf

The L∞ parabola is the geometric locus of points equidis-
tant under the L∞ distance from a line ` (the directrix) and a
(focus) point p /∈ `. In contrast with the standard L2 parabola,
the L∞ parabola consists of a constant number of linear
segments and rays [17].

In the SDGL2 package the input sites are only segments
and points, not lines. Therefore, only bounded parabolic arcs
appear as edges of the L2 segment Voronoi diagram and

p q p q

reg(p, q)

reg(p, q)

reg(p) reg(q) reg(p) reg(q)

Fig. 6. The L∞ bisector between two points with the same y coordinate and
its 1-dimensionalization.

p p

reg(p)reg(p)

s s
reg(s) reg(s)

reg(s, p)

Fig. 7. The L∞ bisector between a vertical segment and one of its endpoints
and its 1-dimensionalization.

never a complete parabola. See Figure 8. On the other hand,
unbounded L∞ parabolic arcs can survive in the corresponding
L∞ diagram. Even complete L∞ parabolas can survive (see
Figure 8).

The existing SDGL2 code is not ready to support the
peculiarities of the L∞ parabolas. For example, the Voronoi
region of any segment is expected to have 0, 1, or 2 infinite
edges (these are edges with the infinite site s∞). While this is
true in the L2 setting, it is not true in the L∞ setting, where
the aforementioned number of infinite edges is unbounded in
general. For example, in the L∞ diagram of Figure 8, there
are six distinct infinite edges neighboring with the region of
the open segment.

L2 L∞

Fig. 8. Only bounded parabolic arcs survive in the L2 diagram, whereas
even complete L∞ parabolas can survive in the L∞ diagram. Arrows point
to distinct infinite edges of the diagrams.
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Fig. 9. The bisector that passes through q touches the parabolic arc at the
parabolic arc’s portion which is parallel to this bisector.

Several problems may occur when a new point site q is
inserted in the interior of an existing segment s. We remark
that this operation is needed when, for example, a newly
inserted segment crosses an existing segment. The algorithm
checks the neighbors of s in the segment Delaunay graph,
splits the site of s to two sites s1 and s2 and adds the site q
to the diagram. In the L∞ setting this has to be done more
carefully than in the L2 setting. For example, when the site q
shares a coordinate with a point p for which there is an L∞
parabolic arc in the diagram, we have to be careful, because
the bisector that passes through q might touch a portion of the
L∞ parabolic arc that is parallel to this bisector (see Figure 9).
Our solution is to derive SDGLinf from SDGL2 and override
some SDGL2 member functions in SDGLinf, in particular the
ones that insert a point in the interior of a segment.

D. Changes in the existing SDGL2 class

Here, we discuss some minimally intrusive changes in the
existing SDG L2 code, so that we can build the SDGLinf class
on top of it.

Functions drawing L2 Voronoi edges are hard-coded in the
existing SDG L2 algorithm class. For the L∞ design, we
decide to keep the algorithm class separate from drawing L∞
Voronoi edges, and we include the L∞ Voronoi edge construc-
tion functions in the L∞ geometric traits. We could move the
L2 constructions to the L2 geometric traits, but we do not
do this, because we do not want to change the specification
(and documentation) of the L2 geometric traits (remember our
design goals). Instead, we implement the algorithm class to
check if the geometric traits contain construction functions
for drawing and only then use them, otherwise (if traits are
not found) use the hard-coded ones. The check is implemented
with template metaprogramming, using the Substitution failure
is not an error (SFINAE) principle [18].

Moreover, the existing code has the types (linear segments,
rays, lines, and parabolic arcs) of the Voronoi edges hard-
coded in the SDGL2 class. Since the L∞ Voronoi edges are
polygonal chains, we also change the code to work with any
type of edge.

In the existing L2 code, when there are two points in the
diagram and a third one is inserted, the resulting Delaunay
graph construction is based on the orientation test for three
points p, q, r (i.e., whether the three points make a left, a
right turn, or they are collinear), which is very specific to the

p q

r

(a)

p q

r

(b)

Fig. 10. (a) p, q, and r define a unique circle, (b) p, q, and r may not define
a unique axis-parallel square.

L2 case. To make the code work for both L2 and L∞, we
substitute the orientation test with a call to the vertex conflict
predicate from the corresponding L2 or L∞ geometric traits
class.

E. The L∞ geometric traits

In this section, we discuss some issues related to the L∞
geometric traits. Like in L2, the traits contain predicates
resolving whether a new site conflicts with an existing Voronoi
vertex (vertex conflict) or an existing edge (edge conflict,
which can be none, partial or complete). These are the pred-
icates needed by any (randomized) incremental construction
algorithm [13]. There are also special conflict-like predicates
used when a new point site is inserted in the interior of a
segment. Remember that, in addition to the predicates, our L∞
traits also contain functions for constructing L∞ bisectors that
are conditionally selected by the algorithms.

The vertex conflict predicates are also known as in-circle
tests. The in-circle test in L2 is analog to an “in-square” test
in L∞. A new site is tested for containment in the minimum
shape (circle or axis-parallel square) that touches the sites
associated with an existing Voronoi vertex. For example, in
L2 the circle that touches three non-collinear points is unique
and its center corresponds to the Voronoi vertex. In L∞,
however, the analog axis-parallel square might not be unique
(see Figure 10). Again our 1-dimensionalization comes to the
rescue, since we can define the Voronoi vertex to be the
intersection of L∞ bisectors of these three points and then
the square becomes unique.

IV. APPLICATION IN VLSI PATTERN ANALYSIS

VLSI patterns are shrinking in size and their error-free print-
ing challenges the chip manufacturing industry. The analysis
of patterns to find faults or error-prone locations, is of prime
importance to the manufacturing process. There are mainly
two kind of faults that can occur during printing: a pinch and
a bridge. A pinch corresponds to an open fault and occurs due
to incomplete printing of a shape or due to discontinuity in
printing of a shape. A bridge corresponds to a short fault and
occurs when two printed shapes are touching each other.

A. VLSI problem — Identifying patterns of interest (POI)

The analysis of a complete layout for finding faults or
error-prone locations is difficult and very time-consuming.
The printability of a layout is related to the clips or patterns
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Fig. 11. Different gauge suggestions.

that it contains. Therefore, pattern selection should be done
in such a way that analysis of the selected set of patterns
should be sufficient to assess the quality of the whole layout.
In other words, it is important to identify clips, known as
patterns of interest (POI), which are more prone to faults.
A lower number of POIs (that cover sufficiently the whole
layout) allows for a faster but still effective analysis of the
layout. Existing pattern selection techniques are mainly based
on image features [19], [1], [21], [20]. However, achieving
an optimal set of POIs is a big challenge in this domain.
The success of printing a POI is verified by taking several
measurements (such as critical distance) on potentially critical
areas of scanning electron microscope (SEM) images of the
printed pattern. Therefore the location of measurement is very
important for proper evaluation of a POI.

B. Hotspot identification and gauge suggestion problem

The measurement location in each pattern is called a gauge
[21]. The gauge is generally represented by a line in the
VLSI pattern around where a critical distance is measured.
Therefore, gauge locations must be meaningful, i.e., the critical
distance measurement around the gauge location should be the
correct measurement for the pattern. Current gauge suggestion
techniques are rule-based or they are done manually by VLSI
designers. The suggested gauges very often miss the location
of critical distance or the location of faults on the clip. The
actual location of faults within the clip or POI is known
as a hotspot. The gauges are the markers within the pattern
that help to categorize a pattern as POI and also to locate
hotspots within the pattern. With good gauge suggestions, the
evaluation of a pattern becomes better, and there will be a
possibility of achieving an optimal set of POIs.

C. Gauge suggestion using the segment Voronoi diagram

We propose to use the L∞ segment Voronoi diagram to sug-
gest good gauge locations based on the proximity information
of the shapes of a pattern, e.g., the spacing between shapes or
the extent of interaction between neighboring shapes.

After studying several clips with existing gauge suggestions
and SEM images of their prints zoomed and centered around

the suggested gauge locations, that were supplied by IBM
Zurich Research Laboratory, we developed our code (based on
the L∞ segment Voronoi diagram) that suggests four types of
gauges (examples in Figure 11). The first two types of gauges
are related to distances of first-order neighboring elements of
shapes in the diagram. The last two types of gauges detect
second-order distance interactions, e.g., elements of shapes
that are close but have another shape element between them.

1) Internal gauge (inside a shape), Gi: It lies on the
center of the Voronoi edge inside the polygonal shape
of minimum width in the pattern. The position of Gi is
the most probable for a pinch, when printing the pattern.
In case there are many shapes with the minimum width,
we prefer the one where the length of the Voronoi edge
is greater, since long and thin shapes are more probable
to give rise to a pinch.

2) External gauge (between different neighboring shapes),
Ge: It lies on the center of the Voronoi edge between the
two shapes that are closest in the pattern. The position
of Ge is the most probable for the formation of a bridge
between the two corresponding shapes, when printing
the pattern. When there are more than two pairs of
shapes with the same distance, we prefer the pair whose
corresponding Voronoi edge is longer, as it implies more
interaction between the shapes and higher probability of
a bridge.

3) Sandwich gauge, Gs: It lies on the center of the Voronoi
edge inside a polygonal shape P1 that is “sandwiched”
between two other shapes P2 and P3 for which the
distance between P2 and P3 is the minimum in the
pattern. There is a probability of a pinch happening
at P1 around Gs because of the influence of P2 and
P3. If there are many (P1, P2, P3) triples with the same
distance between P2 and P3 in the pattern, we prefer
the triple where the relevant Voronoi edges between P1,
P2, P3 overlap more.

4) Comb gauge, Gc: It lies on the center of the Voronoi
edge inside a long polygonal shape P1 (the base of
the comb) that has close to it and on one side other
polygonal shapes (the teeth of the comb). We report the
gauge for the configuration where the base of the comb
shape is closer to the teeth in the pattern. The position of
Gc is dangerous for a pinch, when printing the pattern.

The existing gauge suggestions are performing well only
for a limited number of patterns and our internal and external
gauges cover those limited cases. On the other hand, our
sandwich and comb gauges can be potentially used to identify
critical locations missed by the existing gauge suggestions.
In the following, we validate the usefulness of the gauges
suggested by our code.

D. Experiment

We have performed experiments on a few patterns provided
by IBM Zurich Research Laboratory, in order to assess the
quality of gauges suggested by our code based on the L∞
segment Voronoi diagram. These patterns were hand-picked



by engineers at IBM and for most of them the existing gauge
suggestion is not optimal and misses the critical location in
each pattern. Each pattern is a representative of a wide set
of patterns with similar behavior. We run experiments on ten
patterns: A, B, C, D, E, F, G, H, I, J (Figures 12–21). For
each pattern, we have a figure in which we show three images:
(a) in the left, the pattern and the existing gauge suggestion;
(b) in the center, the SEM image around the existing suggested
gauge and the location of the critical distance measurement
with a cyan arrow; (c) in the right, the pattern together with
the gauge suggestions provided by our tool based on the L∞
segment Voronoi diagram. We denote the gauge of each type
with a specific symbol at its center and with colored arrows as
follows: Gi: 4, blue; Ge: �, red; Gs: ◦, green; Gc: �, purple.
In many cases (A, C, E, G, H, I), the internal and the sandwich
gauge coincide. This is due to the fact that each pattern that
we obtained is relatively small and with small variation.

For each pattern we measure the distance in pixels in the
corresponding SEM image for each of our suggested gauges
and we take the minimum. We show the comparison with
the existing measurements in Table I. For patterns A and E,
we have essentially the same suggestion as the existing one
and therefore the same measurement. For all other patterns,
we have an improvement over the existing gauge. Most of
the best gauges suggested are either internal or external. In
particular, the external gauges suggested for patterns B, D, G,
F, I, J capture interactions between different shapes that could
be printed too close and improve on the existing suggestions.
In pattern C, the vertical internal gauge that we suggest is
more critical (the rectangle is thin along this direction) than
the horizontal external existing gauge suggestion. In pattern E,
we have a gauge Gs suggested by a sandwich configuration
(which coincides with the Gi suggestion). In pattern H, we
have a gauge Gc suggested by a comb configuration, which
allows us to detect a pinch in the SEM image.

Our experiment shows that the L∞ segment Voronoi di-
agram can be used effectively to identify potentially critical
locations of VLSI layouts.

E. Future work

A model-based OPC (MB-OPC) simulator [20], [1] is es-
sential for advanced lithography processes. The simulator must
be efficient and robust. Current simulators are not optimized
and there is a tradeoff of efficiency and robustness. More input
patterns to the simulator result in improved model accuracy,
but the model build time is directly proportional to the number
of input patterns. The main bottleneck is the difficulty to obtain
an optimum set of patterns describing the faults and error-
prone locations for a whole VLSI layout. Optimization for
MB-OPC requires selection of optimal test patterns that would
cover the whole layout. The current test pattern selection
techniques are mainly based on image parameters [12], [19],
[1], [21], [20], which are indicators of the 3D profile of
the printed shapes. While these are very descriptive, they
are very expensive to compute. The main advantage of our
proposed methodology is that is provides gauges that are

pattern dependent, include context information, and at the
same time are orders of magnitude faster to compute. As future
work, we intend to use the L∞ segment Voronoi diagram for
obtaining a good set of patterns for a VLSI layout that would in
turn enhance MB-OPC. We would also like to analyze bigger
layout clips on the order of tens of thousands of shapes.

V. CONCLUSIONS

We presented an implementation of the segment Voronoi
diagram in the L∞ metric based on the Segment Delaunay
graph package of CGAL. The implementation involved three
parts: (1) some generalization of the algorithm for existing
segment Delaunay graph package to adapt it for the L∞
segment Delaunay graph, (2) implementing the traits classes
containing predicates and constructions for building Voronoi
diagram of segments and points under the L∞ metric, and (3)
providing GUI demo, examples and ipelet for the package. In
addition, we discussed some applications in the VLSI CAD
area, in particular, the discovery of potentially problematic
areas when printing VLSI layout patterns and a possible future
work of obtaining an optimized set of patterns of interest
(POIs), using proximity information from the L∞ segment
Voronoi diagram, with the goal of enhancing of the model-
based optical proximity correction.
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